Article 6216

Title of the article

MATHEMATICAL SIMULATION OF GLUCOSE LEVEL DETERMINATION
IN LIQUID BY THE WAVEGUIDE METHOD

Authors

Derevyanchuk Ekaterina Dmitrievna, Researcher-laboratory assistant, Research Center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Shutkov Aleksandr Sergeevich, Student, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru

Index UDK

517.3

DOI

10.21685/2072-3040-2016-2-6

Abstract

Background. The present work considers an inverse problem of glucose level determination in liquid by the waveguide method. The given problem relates to one of widespread diseases – diabetes mellitus, which is characterized by a high content of glucose in blood. People with diabetes mellitus need insulin injections every day. The insulin dose depends on the glucose level in blood. Glucose concentration in blood is determined, as a rule, invasively through needling a finger. Such needling should be done several times a day. For that reason, nowadays, there are being developed noninvasive methods of determining glucose concentration in blood. The aim of the present research is to develop a mathematical model for glucose level determination in liquid through the waveguide method.
Materials and methods. Task setting is reduced to the inverse problem of electrodynamics; the authors have suggested a method to solve the set problem on the basis of general methods of the boundary problem theory, as well as the theory of approximate methods of solving nonlinear equation systems.
Results. The authors obtained numerical results of solving test problems, as well as a series of experiments.
Conclusions. The researchers obtained numerical results of solving the inverse problem in the case of isotropic single-sectional diaphragm for complex dielectric permeability. The authors completed a series of experiments, proving a dependence of the attenuation coefficient on a glucose level in liquid.

Key words

noninvasive method, glucose level, permittivity, permeability tensor.

Download PDF
References

1. Vaynshteyn L. A. Elektromagnitnye volny [Electromagnetic waves]. Moscow: Radio i svyaz', 1988. – 442 p.
2. Il'inskiy A. S., Kravtsov V. V., Sveshnikov A. G. Matematicheskie modeli elektrodinamiki [Mathematical models of electrodynamics]. Moscow: Vysshaya shkola, 1991. – 224 p.
3. Medvedik M. Yu., Smirnov Yu. G. Obratnye zadachi vosstanovleniya dielektricheskoy pronitsaemosti neodnorodnogo tela v volnovode: monogr. [Inverse problems of dielectric permeability of a heterogeneous body in a waveguide: monograph]. Penza: Izd-vo PGU, 2014. – 76 p.
4. Smirnov Yu. G., Shestopalov Yu. V. and Derevyanchuk E. D. Algebra, Geometry and Mathematical Physics, Springer Proceedings in Mathematics and Statistics, Ser. 10533. 2014, vol. 85, pp. 555–567.
5. Smirnov Yu. G., Shestopalov Yu. V. and Derevyanchuk E. D. Inverse Problems and Large-Scale Computations, Series: Springer Proceedings in Mathematics and Statistics. 2013, vol. 52, pp. 169–181.
6. Shatalova T. A., Adel'yanov A. V., Gorobchenko O. A. et al. Biofizicheskiy vestnik [Biophysical bulletin]. 2012, vol. 1, no. 28.
7. Shishmarev V. Yu. Elektroradioizmereniya: uchebnik [Electrical radio measurements: textbook]. Moscow: Akademiya, 2004. – 336 p.

 

Дата создания: 20.10.2016 14:07
Дата обновления: 20.10.2016 15:26